Laplace transform, regularized deconvolution : designing virtual temperature sensors

Denis Maillet

University of Lorraine & CNRS, Nancy, France

Laboratoire d'Energétique et de Mécanique Théorique et Appliquée (LEMTA)

International Symposium on Thermal Effects in Gas flows at Microscale October 23-25, 2019, Ettlingen, Germany

Definitions and objectives

A virtual sensing system uses:

information available from other measurements and process parameters
 → estimate of the quantity of interest. [Wikipedia]

```
(This estimation) uses mathematical models (...)
which use other physical sensor readings (...) [www.intellidynamics.net]
```

Present application: Design of virtual thermal sensors

for

- estimating temperature or heat flux or rate of heat flow or heat source

from

- temperature sensors located at points different from the points where either the temperature or heat flux is looked looked for

with prior knowledge

- of a corresponding mathematical model → *convolutive structure* of adhoc models

C Lemia

Gensesis of this work

Personal/research team background:

1) **Parameter estimation for** thermophysical property characterization

2) Function estimation: inverse heat conduction problems (heat flux, ill-posed)

Scope of the talk

Topic 1) Introduction to the world of time convolutions

 \rightarrow in OD and 1D cases, interest of Laplace transformation for transient diffusion problems

→ introduction of the impulse response in a model identification inverse problem: time domain form of a convolution product

Topic 2) Laplace transformation useful in real 3D word: conduction, forced convection, linearized radiation)

..... if some assumptions are verified

→ convolutive models (with their nice properties)

Applications to conjugated heat transfer :forced convection (fluid) + conduction (solid): Thick channel – Plate fin heat exchanger

C Lemia

Outline

- 1. Laplace transform and Linear Ordinary Differential Equations with Time Independent coefficients: properties, transfer function and convolution product S4
- 2. Laplace transform and 0 D heat transfer: thermal impedance S7
- **3.** Laplace transform and 1D heat transfer: Thermal quadrupoles, impedance, transmittance, admittance and calculation of their time versions S8
- 4. Practical calculation of a convolution product and experimental deconvolution S12
- 5. Laplace transform and 3 D heat transfer S16
- 6. Laplace transform and steady state transfer functions S22
- 7. Application to conjugated transfer in heat exchangers S24 Thick channel – Plate fin heat exchanger: characterization and fouling detection
- 8. Conclusions and perspectives S36

1. Laplace transform and Linear Ordinary Differential Equations with Time Independent coefficients (LTI)

$$\frac{dy}{dt} + a y = b u ; a \text{ and } b : \text{ constants}$$

$$y (t = 0) = y_0$$
LAPLACE TRANSFORMATION : $\overline{y} (p) = \mathcal{L} [y(t)] = \int_0^\infty \exp(-p t) y(t) dt$
Laplace parameter
$$Property 1: \qquad \mathcal{L} \left[\frac{dy}{dt}\right] = p \overline{y} - y_0$$

$$\overline{y} (p) = \frac{b}{p+a} \overline{u} (p) + \frac{1}{p+a} y_0 = \overline{y}_{forced} (p) + \overline{y}_{relax} (p)$$

$$\overline{y}_{forced} (p) = \overline{H}(p) \overline{u} (p)$$

$$\overline{u} (p) \rightarrow \overline{H}(p) \rightarrow \overline{y}_{forced} (p)$$
Transfer function

$$\overline{y}_{forced} (p) = \overline{H}(p) \overline{u} (p)$$

$$\downarrow$$
Transfer function

$$\overline{u}(p) \rightarrow \overline{H}(p) \rightarrow \overline{y}_{forced}(p)$$

Property 2:
$$\int_{-1}^{-1} \left[\overline{H}(p) \ \overline{u}(p) \right] = H(t) * u(t) = \int_{0}^{t} H(t-t') u(t') dt' = \int_{0}^{t} H(t') u(t-t') dt'$$

$$\begin{array}{c} \mathbf{y}_{forced} (t) = H(t) * u(t) = \int_{0}^{t} H(t-t') u(t') dt' \\ \downarrow & \downarrow & \downarrow \\ \text{Output} & \text{Impulse Input} \\ \text{Response} & \text{response Excitation} \\ (\text{consequence}) & (\text{cause}) \end{array}$$

Here, *mathematical problem* :

Analytical expression of impulse response:

Analytical expression of relaxation solution:

$$H(t) = b \exp(-at)$$
$$y_{relax}(t) = y_0 \exp(-at)$$

2. Laplace transform and 0 D heat transfer

Corresponding heat transfer problem: lumped body (0 D) approximation

Excitation : u(t) = P(t) (units: watts) starts at $t = 0^+$ Response :

 $y(t) = \theta_{forced}(t) = T(t) - T(t=0)$ (units: Kelvin)

$$\frac{d\theta}{dt} - \frac{1}{\tau}\theta = \frac{1}{\rho c V}P(t)$$

with $\theta(0) = \theta_0 = 0$ and $\tau = \frac{\rho c V}{h A}$

 $a = 1/\tau$ (units:s⁻¹); $b = 1/(\rho c V)$ (units:K/J)

Here H (.) = thermal impedance, noted Z (.) (units: Kelvin/Joule)

$$\overline{Z}(p) = \frac{1}{\rho c V} \frac{b}{p - 1/\tau} \iff Z(t) = \frac{1}{\rho c} \frac{1}{V} \exp(-t/\tau)$$

Transfert function Operational impedance Impulse response = Time impedance

$$\overline{P}(p) \rightarrow \overline{Z}(p) \rightarrow \overline{\theta}_{forced}(p)$$

3. Laplace transform and 1 D heat transfer

REFERENCES [1] H.S. Carslaw & J.C. Jaeger, Conduction of Heat in Solids, Oxford U. Press, 1947

[2] L. A. Pipes, Matrix analysis of heat transfer problems, Journal of the Franklin Institute, vol. 263, n° 3, pp. 195-205, 1957
 [3] D. Maillet, S. André, J.C. Batsale, A. Degiovanni, C. Moyne, Thermal Quadrupoles – Solving the heat equation through integral transforms, Wiley, 2000

$$\begin{bmatrix} \overline{\theta} (x_{in}, p) \\ \overline{\varphi}_{1} (x_{in}, p) \end{bmatrix} = \begin{bmatrix} A_{e}(p) & B_{e}(p) \\ C_{e}(p) & D_{e}(p) \end{bmatrix} \begin{bmatrix} \overline{\theta} (x_{out}, p) \\ \overline{\varphi}_{2} (x_{out}, p) \end{bmatrix}$$
Boundary
Conditions
$$\begin{cases} \varphi = -\lambda \frac{\partial \theta}{\partial t} = q(t) & \text{at } x = 0 \text{ for } t > 0; \\ \varphi = -\lambda \frac{\partial \theta}{\partial t} = h \theta & \text{at } x = \ell \text{ for } t > 0 \end{cases}$$

$$q(t) = \begin{array}{c} & & \\ & &$$

Here: $x_{in} = 0$ and $x_{out} = \ell \implies e = \ell$

Product of QP matrices
$$\rightarrow \begin{bmatrix} \overline{\theta}_1(p) \\ \overline{q}(p) \end{bmatrix} = \begin{bmatrix} A(p) & B(p) \\ C(p) & D(p) \end{bmatrix} \begin{bmatrix} \overline{\theta}_2(p) \\ 0 \end{bmatrix}$$

Solution in Laplace domain
$$\rightarrow \qquad \overline{\theta}_1 = \frac{A}{C} \overline{q} ; \overline{\theta}_2 = \frac{1}{C} \overline{q} ; \overline{\varphi}_2 = \frac{h}{C} \overline{q}$$

Alemka

- Return to the time domain: inversion of Laplace transform = ill-posed problem
- Simple cases: Analytical solutions in simple cases: 1) Laplace transform tables 2) Rational fractions (zeros/poles)
- General case: > Broomwich integral (involved technique)
 - Numerical inversion: 1) Stehfest's algorithm, 2) through Fourier transform
 3) de Hoog's algorithm (invlap), ...

Specific case (impedance):

$$u \equiv q$$
; $y \equiv \theta$ (θ_1 or θ_2); $H \equiv Z(Z_1 \text{ or } Z_2)$

Property 2:

$$\overline{\theta} = \overline{Z} \quad \overline{q} \quad \Leftrightarrow \quad \theta \quad (t) = \int_0^t Z \quad (t') \quad q \quad (t - t') \quad dt'$$
simple product
convolution product

Question: Can we write conversely $\overline{q} = \overline{Y} \ \overline{\theta}$ with $\overline{Y} = 1/\overline{Z}$? $q(t) = \int_0^t Y(t') \ \theta(t-t') \ dt'$

2nd principle of thermodynamics: $Z(t) \ge 0$ (impulse response)

Property 3:
$$\frac{d\overline{Z}}{d\rho} = \frac{d}{d\rho} \left(\int_{0}^{\infty} \exp(-\rho t) y(t) dt \right) = -\rho \overline{Z}(\rho) \le 0 \implies \frac{d\overline{Y}}{d\rho} = \frac{d(1/\overline{Z})}{d\rho} \ge 0$$

Result: a **thermal admittance** *Y* (*t*) (with respect to a temperature response) **does not exist** It is the solution of an **inverse (ill-posed) problem**

Causality property:

Heat power source (cause) before any temperature variation (consequence) in the system

4. Practical calculation of a convolution product

UNIVERSITÉ DE LORRAINE

and experimental deconvolution

Specific case (transmittance):

$$H \equiv W$$
, $u \equiv \theta_1$, $y \equiv \theta_2$

response transmittance unique pseudo source

$$\begin{array}{cccc}
& & & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

 θ_2 $t_1 t_2 \cdots$ 0 t_m

 $Z_{i} = \frac{1}{\Delta t} \int_{t_{i-1}}^{t_{i}} Z(t) dt \approx \frac{1}{2} \left(Z(t_{i-1}) + Z(t_{i}) \right)$ for $z(t) = \theta_1$ or W

$$t_0 = 0$$
; $t_i = i \Delta t$ for $i = 1$ to m
 $\Delta t = t_{final} / m$

Vector/matrix form of a convolution product

Continuous time domain:

$$y(t) = H(t) * u(t)$$

Introduction of a matrix function M (.) that depends on a time function z(t) and on its parameterization time step Δt :

	$\int Z_1$				
	Z 2	Z ₁		0	
$\mathbf{M}(\mathbf{z}) \equiv \Delta t$	Z_3	Z ₂	Z ₁		
	:	:	•	•••	
	z_m	Z_{m-1}	Z_{m-2}	•••	Z_1

In maths, M (z) is a lower triangular Toeplitz matrix In heat transfer (physics) : z(t) = H(t) or u(t)

 $\boldsymbol{y} = \begin{pmatrix} \boldsymbol{y}(t_1) \\ \boldsymbol{y}(t_2) \\ \vdots \\ \ddots(\boldsymbol{u}) \end{pmatrix} \quad \boldsymbol{H} = \begin{pmatrix} \boldsymbol{u}_1 \\ \boldsymbol{H}_2 \\ \vdots \\ \boldsymbol{H}_m \end{pmatrix} \quad \text{and} \quad \boldsymbol{u} = \begin{pmatrix} \boldsymbol{u}_1 \\ \boldsymbol{H}_2 \\ \vdots \\ \boldsymbol{H}_m \end{pmatrix}$ u₂ : U_m time averaged values instant values over each time interval

$$z_i = \frac{1}{\Delta t} \int_{t_{i-1}}^{t_i} z(t) dt \approx \frac{1}{2} \left(z(t_{i-1}) + z(t_i) \right)$$

Impulse response $H(t) \ge 0 \rightarrow$ coefficients of **M** (*H*) are non-negative

Vector/matrix form of convolution product :

Specific case (transmittance):

$$H \equiv W$$
, $u \equiv \theta_1$, $y \equiv \theta_2$

 $\boldsymbol{\theta}_2 = \mathbf{M}(\boldsymbol{\theta}_1) \ \boldsymbol{W} = \mathbf{M}(\boldsymbol{W}) \ \boldsymbol{\theta}_1$

Cemta

Validation: Numerical Inversion of Laplace Transforms by de Hoog's algorithm (Invlap)

$$\theta_{1}(t) = \left(1 - e^{-\frac{t}{\tau}}\right) \theta_{1}^{ss} \text{ with } \tau = 30 s ; \quad \theta_{1}^{ss} = 30 \,^{\circ}C \text{ and } \Delta t = 0.5 s$$

$$\frac{t_{f}}{(s)} \frac{\ell}{(mm)} \frac{h}{(W.m^{-2}.K^{-1})} \frac{W.m^{-1}.K^{-1}}{(W.m^{-1}.K^{-1})} \frac{(kJ.m^{-3}.K^{-1})}{3666}$$

Comparison: analytical W and identified W from synthetic profiles (COMSOL)

Effect of noise on identified transmittance (simulations, 1D configuration)

 Noise on the response θ2 more penalizing than noise on the source θ1.

Centa

5. Laplace transform and 3 D heat transfer

Assumptions: time constant thermophysical properties and velocity field

Initial uniform temperature field or steady state conditions + one single separable unsteady thermal excitation

Time part of thermal excitation *u* (*t*) (starts at time t = 0) :

- volumetretric heat source $Q_v(t)$
- surface heat or temperature source $Q_s(t)$ or $T_s(t)$
- change of external fluid temperature $T_{\infty}(t) \neq T_{init}$
- change of temperature at one fluid inlet $T_b^{in}(t)$

Fixed geometrical support:

- point
- line
- surface
- volume

Cemta

Change of perspective: one single **heterogeneous fluid** in **one single domain** (if solid part : zero velocity)

Recap

Physical system:

Set of solids AND fluid(s):

3D forced convection with constant velocities (in time but not in space)

P = ANY point in the system

One single thermal excitation defined by its support and separable

Assumptions : Transient heat equation + boundary conditions with time-invariant coefficients + uniform initial temperature or steady state (the system is Linear and also Time-Invariant LTI)

Temperature rise at any point P:

 θ (P, t) = T (P, t) - T_{init} (P)

Its Laplace transform :

$$\overline{\theta} (\mathsf{P}, p) = \int_{0}^{\infty} \exp(-p t) \theta (\mathsf{P}, t) dt$$
Laplace parameter

Assumptions : Transient heat equation + boundary conditions with time-invariant coefficient + uniform initial temperature (the system is Linear and also Time-Invariant LITI)

Consequences :Laplace transformed heat equation⁴ (no time derivative)

$$\rho c(\mathsf{P}) p \overline{\theta}(\mathsf{P}, p) + \rho c(\mathsf{P}) \vec{u} (\mathsf{P}) \cdot \vec{\nabla} \overline{\theta} (\mathsf{P}, p) = \vec{\nabla} \cdot \left(\lambda(\mathsf{P}) \vec{\nabla} \overline{\theta} (\mathsf{P}, p)\right) + \vec{\frac{Q}{V_v}} (p) \frac{\overline{Q}}{V_{\text{source}}} f(\mathsf{P})$$
Transient Advection Conduction Internal source

[4] W. Al Hadad, D. Maillet, Y. Jannot, Modeling unsteady diffusive and advective heat transfer for linear dynamical systems: A transfer function approach, International Journal of Heat and Mass Transfer 115 (2017) 304–313. C Lemba

Excitation u	Response y	Transfer <u>function</u> H	
Power source Q (watts)	Temperature difference θ (kelvins)	Impedance Z (K.J ⁻¹)	
Temperature difference θ (kelvins)	Temperature difference θ (kelvins)	Transmittance W (s ⁻¹)	
Power source Q (watts)	Rate of heat flow $arPhi$ (watts)	Transmittance W (s ⁻¹)	
Temperature difference θ (kelvins)	Rate of heat flow $arPhi$ (watts)	Admittance Y (W.K ⁻¹ .s ⁻¹) ²¹	

6. Laplace transform and steady state transfer functions

$$y(P, t) = H(P, t) * u(t) = \int_0^t H(P, t-t') u(t') dt'$$

Traditional definition of a thermal resistance in steady state regime

Assumption :

A flux pipe exists between 2 isothermal surfaces

 Φ^{ss} : steady state rate of heat flow

Generalized resistance : no flux pipe, no isothermal surface Q^{ss} : source (= cause) $T_2^{\rm ss} - T_1^{\rm ss} = Z^{\rm ss} (Q_2^{\rm ss} - Q_1^{\rm ss})$ variation of thermal power (watts) (thermodynamical conversion from a non thermal energy) 23

between 2 steady states

7. Applications to conjugated heat transfer in heat exchangers

□ Thermal regime caused by an unsteady thermal excitation somewhere and observed temperature response in any point *q* :

$$\theta_q(t) = T_q(t) - T_{init}$$
 Consequences : $\theta_q(t \le 0) = 0$ and $\theta_q(t > 0) \ne 0$

θ

mesured

(M (W

Previously estimated

Following experiments:

UNIVERSITÉ DE LORRAINE

- inverse use = virtual temperature sensor (= inverse PB of source estimation

25

 $\boldsymbol{\theta}_1$

estimed

anla

₩₂ :

 W_{1m}

Anla

How to change the inlet temperature of one fluid in a heat exchanger without changing the flowrates ?

[5] W. Al Hadad, D. Maillet, Y. Jannot, Experimental transfer functions identification: Thermal impedance and transmittance in a channel heated by an upstream 27 unsteady volumetric heat source, International Journal of Heat and Mass Transfer 116 (2018) 931–939.

Centa

Identification of transfer function using <u>experimental</u> temperature recording:

Comparison of identified transmittance W (outlet/inlet): step or periodical heating

Example 2: Experimental identification the model of a plate fin heat exchanger

Fluids =water

Manual control through changing setpoint temperature Thermostats with circulation Pump (unchanged flowrates)

Inlet/outlet thermograms – Experiment 1

Inlet/outlet thermograms – Experiment 3

Inlet/outlet thermograms – Experiment 2

Centa

-10

Time(s)

RMRS
$$(\mu) = \mathbf{r} (\hat{\mathbf{W}}_{\mu}^{q}) / \sqrt{m} \approx \sigma$$

 $\hat{\sigma} \approx 0.0066 \text{ K}$ (before excitation)

Assessment of the exchanger effectivness through time integration of transmittances

$$\varepsilon = \frac{Q_c}{Q_{\text{max}}} = \frac{C_c \left(\theta_{out}^{c,ss} - \theta_{in}^{c,ss}\right)}{C_{\text{min}} \left(\theta_{in}^{h,ss} - \theta_{in}^{c,ss}\right)} = \frac{\theta_{out}^{c,ss}}{\theta_{in}^{h,ss}} = W_{out}^{c,ss}$$

	$W_{out}^{c, ss}$	$W_{out}^{h, ss}$
first experiment	0.627	0.672
second experiment	0.619	0.674
third experiment	0.563	0.641

$$\varepsilon = \left(\frac{\theta_{out}^{c} \ (t \to +\infty)}{\theta_{in}^{h,ss} \ (t \to +\infty)}\right)_{\text{experiment 1}} = 0.6331$$

 $\theta(_{\circ}C)$

(Cemta

Synthetic fouling of the plate fin exchanger and non destructive testing

Outlet transmittances

Hot fluid side

Cold fluid side

Steady state effectiveness	Perturbation	$\dot{m}_h=\dot{m}_c/2=1$ kg / mn		$\dot{m}_h = \dot{m}_c = 2$ kg / mn		
		$\varepsilon_1 = (1 - W_h^{ss})$	$\varepsilon_2 = 2W_c^{ss}$	$\varepsilon_1 = (1 - W_h^{ss})$	$arepsilon_2 = W_c^{ss}$	
without fouling	1	0.66	0.62	0.48	0.44	
	2	0.65	0.62	0.47	0.45	
with fouling (one layer)	1	0.66	0.62	0.48	0.45	
	2	0.65	0.62	0.48	0.45	
with fouling (two layers)	1	0.65	0.58	0.47	0.41	
	2	0.64	0.58	0.46	0.41	

8. Conclusions and perspectives

- Convolutive models in heat/mass transfer interesting for:
 - modeling conjugated 3D heat transfer through model reduction: short-circuits non intrinsic Nusselt number-correlations in forced convection⁶
 - experimental identification of Impulse Responses (IR):
 - Non Destructive Testing (NDT) of ageing of a model: from LTI to non LTI structure of model
 - design of virtual temperature or heat flux sensors
 - IR estimation easier if forced convection present: IR returns quickly to zero
 - however, need for a calibration
- □ Very large field of application:
 - > On-line characterization and NDT of heat exchangers⁷ using steady state transmittances,
 - Virtual sensor construction (calibration + inverse input problem) for radiation in furnaces⁸,
 - Pollutant source estimation⁹ (inverse input problem in turbulent mass transfer),
 - Management of heat storage.

[6] A. Degiovanni, B. Rémy, An alternative to heat transfer coefficient: a relevant model of heat transfer between a developed fluid flow and a non-isothermal wall in the transient regime, *International Journal of Thermal Sciences*, Volume 102, April 2016, Pages 62–77.
[7] W. Al Hadad, V. Schick, D. Maillet, Fouling detection in a shell and tube heat exchanger using variation of its thermal impulse responses: Methodological approach and numerical verification, *Applied Thermal Engineering*, Volume 155 (2019) 612–619.
[8] Thomas Loussouarn, Denis Maillet, Benjamin Remy, Diane Dan, Model reduction for experimental thermal characterization of a holding furnace, *Heat and Mass Transfer*, Volume 54, Issue 8, 1 (2018), Pages 2443-2452, DOI 10.1007/s00231-017-2156-7.
[9] F. Chata, E. Belut, D. Maillet, F.X. Keller, A. Taniere, Estimation of an aerosol source in forced ventilation through prior identification of a convolutive model, *International Journal of Heat and Mass Transfer* 108 (2017) 1623–1633.

Perspectives:

optimal deconvolution, for minimizing estimation bias and standard deviation,

in space domain: minimizing dependence of IR on the arbitrary type of BC at the frontier,

- in time domain, IR valid for linear forced response:
 - no relaxation of the initial temperature field (uniform or steady state),
 - otherwise relaxation caused by past excitations

➢ if relaxation term, possible use of AutoRegressive models with eXternal inputs¹⁰ (ARX).

 [10] T. Loussouarn, D. Maillet, B. Rémy, V. Schick, D. Dan, Indirect measurement of temperature inside a furnace, ARX model identification, *Journal of Physics: Conference Series*, Volume 1047, Issue 1, 4 July 2018, Article number 012006 012, 9th International Conference on Inverse Problems in Engineering, ICIPE 2017; University of Waterloo; Canada; May 23-26, 2017 Code 137986

Thank you for your attention !