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(This estimation) uses mathematical models (…) 

which use other physical sensor readings  (…) [www.intellidynamics.net]  

A virtual sensing system uses:

- information available from other measurements and process parameters

→ estimate of the quantity of interest. [Wikipedia]

Present application: Design of virtual thermal sensors

for

- estimating temperature or heat flux or rate of heat flow or heat source 

from

- temperature sensors located at points different from the points 

where either the temperature or heat flux is looked looked for

with prior knowledge

- of a corresponding mathematical model → convolutive structure of adhoc models

Definitions and objectives
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Gensesis of this work

Personal/research team background: 

1) Parameter estimation for thermophysical property characterization

2) Function estimation: inverse heat conduction problems (heat flux, ill-posed)

Topic 1) Introduction to the world of time convolutions

→ in 0D and 1D cases, interest of  Laplace transformation for transient diffusion problems

→ introduction of the impulse response in a model identification inverse problem:

time domain form of a convolution product 

Topic 2) Laplace transformation useful in real 3D word:

conduction, forced convection, linearized radiation)  

…… if some assumptions are verified 

→ convolutive models (with their nice properties)

Applications to conjugated heat transfer :forced convection (fluid) + conduction (solid):

Thick channel – Plate fin heat exchanger 

Scope of the talk
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1. Laplace transform and Linear Ordinary Differential Equations with Time Independent  

coefficients: properties, transfer function and convolution product – S4

2. Laplace transform and 0 D heat transfer: thermal impedance – S7

3. Laplace transform and 1D heat transfer:  Thermal quadrupoles, impedance, l

transmittance, admittance and calculation of their time versions – S8

4. Practical calculation of a convolution product and experimental deconvolution – S12

5.   Laplace transform and 3 D heat transfer – S16

6. Laplace transform and steady state transfer functions – S22

7.   Application to conjugated transfer in heat exchangers – S24

Thick channel – Plate fin heat exchanger: characterization and fouling detection 

8.   Conclusions and perspectives  – S36

Outline
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1. Laplace transform and Linear Ordinary Differential Equations with Time Independent 

coefficients (LTI)
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Output
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Input
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Here, mathematical problem :

Analytical expression of impulse response: )(exp)( - a tbtH =

)(exp)( 0 taytyrelax −=Analytical expression of relaxation solution:
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Corresponding heat transfer problem: lumped body (0 D) approximation

Excitation : u (t) = P (t) (units: watts) starts at t = 0+

)(pZ)(pP )(pforcedθ

Here H (.) =  thermal  impedance, noted Z (.)  

(units: Kelvin/Joule)

K/J) :(units)1/(;)s :(units1/ -1 cVba ρτ ==

)0(-)()()( === tTtTtty forcedθ (units: Kelvin)

Response :

2. Laplace transform and 0 D heat transfer

Lumped body approximation :          
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λ

/dtP

A/Vd/dhBi
2c)(oftimesticcharacteri

6with1)2(

<<

=<<=

T∞ = T  (t = 0)

1 1 1
( ) ( ) exp( / )

1/
b

Z p Z t - t
cV p c V

τ
ρ τ ρ

= ⇔ =
−

Transfert function

Operational impedance

Impulse response

= Time impedance
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What happens in 1 D transient heat conduction ? 
Heat equation (1) {

tax ∂
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[1] H.S. Carslaw & J.C. Jaeger,Conduction of Heat in Solids,  Oxford U. Press, 1947

[2] L. A. Pipes,Matrix analysis of heat transfer problems,  Journal of the Franklin Institute, vol. 263, n° 3, pp. 195-205, 1957

[3] D. Maillet, S. André, J.C. Batsale, A. Degiovanni, C. Moyne, Thermal Quadrupoles – Solving the heat equation through integral transforms, Wiley, 2000
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t

Temperature variation Heat flux

3. Laplace transform and 1 D heat transfer

Fora sublayer of any thickness e = x2 – x1 :
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)(tW

)(tq
)(1 tθ )(2 tθ

0=∞θ.
W (t)

Z 2 (t)  

Z1 (t)

• Return to the time domain:    inversion of Laplace transform = ill-posed problem

• Simple cases:  Analytical solutions in simple cases: 1) Laplace transform tables 2) Rational fractions (zeros/poles)

• General case:

221 oror ϕθθ

Responses22 or ϕθ

)(pH)(pu )(py

q = Real source

1θ = Pseudo - source

 Broomwich integral (involved technique)

 Numerical inversion: 1) Stehfest’s algorithm,  2) through Fourier transform
3) de Hoog’s algorithm (invlap), …

Other  technique:  use of the convolution product form 

qWqZqZ flux=== 22211 ;; ϕθθ

impedances Transmittance

(rear face flux)

11
1

2 θθϕ Y
Z

W flux ==11
1

2
2 θθθ W

Z
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Transmittance (temperature) Admittance
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Specific case (impedance):
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4. Practical calculation of a convolution product

and experimental deconvolution

Specific case (transmittance):
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Vector/matrix form of a convolution product
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Specific case (transmittance):
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In maths, M (z) is a lower triangular Toeplitz matrix In heat transfer (physics) :    z (t) =  H (t)  or u (t) 

112 )()( θWWθθ MM ==

)()()( tu*tHty =

Continuous time domain:

Vector/matrix form of convolution product : uHHuy )()( MM ==

Impulse response H (t)     0   → coefficients of M (H) are non-negative≥
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( ) s.tC;set ssss
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Validation: Numerical Inversion of Laplace Transforms by de Hoog’s algorithm (Invlap)

Comparison: analytical W and identified W from synthetic profiles (COMSOL)

Comparison without noise:  

Temperature profiles (COMSOL) Analytical and identified W

Cross - validation

Model reduction
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• Noise on the response θ2 more penalizing than 

noise on the source θ1.  

noised21 θθ ,

K121 == σσ
noised1θ

K,K 01 21 == σσ

noised2θ
K,K 10 21 == σσ

Effect of noise on identified transmittance (simulations, 1D configuration)
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Assumptions:  time constant thermophysical properties and velocity field

solid  - Ω1

solid  - Ω3

solid  - Ω4

solid  - ΩK

Flowing 

fluid 

ΩK -1

solid  - ΩK-2

Flowing 

fluid 

Ω2

Material multicomponent system = K  solid or  fluid domainssolid fluid

What happens in 3 D transient heat transfer ? 

5. Laplace transform and 3 D heat transfer
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Fixed geometrical support:

• point

• line

• surface

• volume

Initial uniform temperature field  or steady state conditions

+  one single separable unsteady thermal excitation

solid  - Ω1

solid  - Ω3

solid  - Ω4

solid  - ΩK

Flowing 

fluid 

ΩK -1

solid  - ΩK-2

Flowing 

fluid 

Ω2

)(tQv

sP

initss TtTtQ ≠)(or)( initTtT ≠∞ )(

sP
(P)h

sP

Time part of thermal excitation u (t) (starts at time t = 0) :

• volumetretric heat source 

• surface heat or temperature source

• change of external fluid temperature

• change of temperature at one fluid inlet )(tT in
b

initTtT ≠∞ )(

)(or)( tTtQ ss

)(tQv

)()( tTcmtQ in
bininin

ɺ=
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Change of perspective: one single heterogeneous fluid in one single domain

(if solid part : zero velocity)

)(P,)( tTty ≡

P

)(tQv

sP

initss TtTtQ ≠)(or)( initTtT ≠∞ )(

sP
(P)h

)()( tTcmtQ in
bininin

ɺɺ=

(P) : )boundaries (external

 tcoefficien transfer heat

(P)v  :field  velocity

(P)  :heat  volumetric

(P):tyconductivi  thermal

h

c
�

ρ
λ

Point response at any point P :Transient separable thermal excitation :

u (t) )(P,)( tTty ≡
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( ) ( ) ( ) (P)
)(

)(P(P))(P(P)P)(PP
source

f
V

tQ
t,Tt,Tuct,

t
T

c v+∇∇=∇+
∂
∂ ����

λρρ ..

Transient Advection Conduction Internal source

Assumptions :  Transient heat equation + boundary conditions with time-invariant coefficients + uniform initial

temperature or steady state (the system is Linear and also Time-Invariant LTI)

Physical system:   

Set of solids AND fluid(s):

3D forced convection 

with constant velocities

(in time but not in space)

P = ANY point in the system

Recap

One single thermal excitation defined by its support and  separable

19
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Assumptions :  Transient heat equation + boundary conditions with time-invariant coefficient + uniform 

initial temperature (the system is Linear and also Time-Invariant LITI)

( ) ( ) ( ) (P)
)(

)(P(P))(P(P)P)(PP
source

f
V

pQ
p,p,ucp,pc v+∇∇=∇+ θλθρθρ

����
..

Transient Advection Conduction Internal source

( ) ( ) ( ) (P)
)(

)(P(P))(P(P)P)(PP
source

f
V

tQ
t,Tt,Tuct,

t
T

c v+∇∇=∇+
∂
∂ ����

λρρ ..

Transient Advection Conduction Internal source

Consequences :Laplace transformed heat equation4 (no time derivative) 

(P)-)(P)(P initTt,Tt, =θ

Temperature rise at any point P:

tt,tpp, d)(P)(-exp)(P
0

θθ 
∞

=

Its Laplace transform :

Laplace parameter

20
[4] W. Al Hadad, D. Maillet, Y. Jannot, Modeling unsteady diffusive and advective heat transfer for linear dynamical systems: A transfer function approach, 

International Journal of Heat and Mass Transfer 115 (2017) 304–313.
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Linear system with a single excitation

Temperature or flux

response at any point P

in the system 



)() ,(P) (P, pupHpy =

t''tu'ttHtu*t,Ht,y
t

d)() (P,)()(P)(P
0 −==

or convolution product (time domain)  

Forced response

excitation

= simple product 

(Laplace domain)

21

H (P , t)

,

( )

( ) ( ) or ( )

or ( ) - (P ) or ( ) -

or ( ) -

init init
v v s s

init
s init s

in in init
b b

u t

u t Q t Q Q t Q

T t T T t T

T t T
∞ ∞

= − −

Relative  (transient ) 

excitation :

)(P,directionany           

 influxheatlocalor      

(P)-)(P,)(P,)(

)(

t

TtTtty

ty

x

init

ϕ

θ ==
:  P  pointspecificanyinResponseImpulse response

« init »= initial steady state

or uniform temperature field
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ss ss ssy H u=

Steady state version (ss) 

of a transfer function
( )

0

ssH H t dt
∞

= 
time

distribution

asymptotic 

values

t0

H

6. Laplace transform and steady state transfer functions



23

Traditional definition 

of a thermal resistance 

in steady state regime

Assumption :

A flux pipe exists between 

2 isothermal surfaces

Generalized resistance :

no flux pipe , no isothermal surface

variation of thermal power (watts)

(thermodynamical conversion

from a non thermal energy)

between 2  steady states

)-( 1212
ssssssssss QQZTT =−

Φ ss : steady state rate of heat flow 

Q ss : source (= cause) 
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7. Applications to conjugated heat transfer in heat exchangers

 Thermal regime caused by an unsteady thermal excitation somewhere

and observed temperature  response in any point q :

( ) ( ) initqq TtTt −=θ ( ) ( ) 00and00 ≠>=≤ tt qq θθConsequences : 

Tq
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 First experiment: 

- (inverse) calibration problem

instantaneous values





















=
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,

,
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11

θ

θ
θ

⋮
θ



















=

mw

w

w

1

2

1

⋮
w

averaged values

 Following experiments:

qθ
( ) 1

1)( −
θM qˆ

1W
measured

mesured
estimated

qθ
( ) 1

1 )(
−qŴM

1θ̂

mesured
Previously estimated

estimed

- inverse use =

virtual temperature sensor

(= inverse PB of source estimation

response unique pseudo sourcetransmittance
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Example: perturbation of inlet temperature T1 of hot fluid



How to change the inlet temperature of one fluid in a heat exchanger 

without changing the flowrates ?

3T Cold fuid

Hot fluid

3S

h

0

h

1T 2T

4T

∞T

x 2S

1S

∞T

P
W

Z

Q

transmittance
impedance

11 )( ZQθ M= q
q Wθθ 11)(M=

)(1 tθ  )(to)( 32 tt θθ

)(P tθ

qW11Z)(tQ
Pseudo Source

impedancetransmittance
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Example 1 : Experimental impedance/transmittance estimation

for a heated flow in a thick wall channel5 (calibration)

[5] W. Al Hadad, D. Maillet, Y. Jannot, Experimental transfer functions identification: Thermal impedance and transmittance in a channel heated by an upstream 

unsteady volumetric heat source, International Journal of Heat and Mass Transfer 116 (2018) 931–939.

Response : 
thermocouples
d = 50.8 μm

Flow

rate
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)(tTin

)(tTout
Upper and lower

tranquilization chambers

Comparison of identified Z : step or periodical heating

Identification of transfer function using experimental temperature recording:

Square periodical heating

step heating

identified

impedances

( ) outinoutin θQZ or
1

or )( −= M

28

−  Zin Step  - Tikhonov

− Zout Step  - Tikhonov

+ Zin  Periodical – Tikhonov

+ Zout  Periodical – Tikhonov

Z
(K

 .
 J

-1
) 

time (s)
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heating   periodical  square

speriodCT o 129521 ==∞ ,.

heatingstep

CT o320.=∞

Comparison of identified transmittance W (outlet/inlet): 

step or periodical heating

29

out
b

in
b θθW )(1−= M

Pseudo-source

Response

Transmittance

W
(s

-1
) 

time (s)

−  Step - TSVD

− Step  - Tikhonov

− Periodical – TSVD

− Periodical – Tikhonov

Oscillations past first peak and for long times,

zero initial level hard to recover :

Estimation of transmittance W (noisy output 

and input) more difficult here than Z

(noisy output and input, and bias: not completely LTI)
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Example 2:    Experimental identification the model of a plate fin  heat exchanger

Fluids =water
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Inlet/outlet thermograms – Experiment 1

Manual control through

changing  setpoint

temperature

Thermostats with circulation

Pump (unchanged flowrates)

Inlet/outlet thermograms – Experiment 2 Inlet/outlet thermograms – Experiment 3
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( )2 22

2 2

exp exp
1

ˆ Arg min ( )

with ( ) ( )

q

q

µ µ = + 
 

≡ − M

W
W r W W

r W θ θ W

least

squares

sum

penalisation

Regularization: Tikhonov, 0 order

Choice of regularization hyperparameter µ:

Morozov’s criterion

σµ µ ≈= m/ˆRMRS q )()( Wr

ˆ 0.0066 K (before excitation)σ ≈

Transmittance: hot fluid outlet side

Transmittance: cold fluid outlet side

Validation of the concept
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Assesment of the exchanger effectivness  through time integration of transmittances

, , ,
,

, , ,
max min

( - )

( - )

c ss c ss c ss
c ssc c out in out
outh ss c ss h ss

in in in

Q C
W

Q C

θ θ θε
θ θ θ

= = = =

,
experiment 1

( )
0.6331

( )

c
out
h ss
in

t

t

θε
θ
 → + ∞

= =  → + ∞ 

D. Maillet – ISTEGIM - Oct. 23-25 – Ettlingen, Germany 



34

Synthetic fouling of the plate fin exchanger and  non destructive testing

Perturbation 1 Perturbation 2
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Outlet transmittances

Hot fluid side Cold fluid side

ss
cW

kg / mnkg / mnSteady state

effectiveness
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 Convolutive models in heat/mass transfer interesting for:

 modeling conjugated 3D heat transfer through model reduction: 

short-circuits non intrinsic Nusselt number-correlations in forced convection6

 experimental identification of Impulse Responses (IR):

- Non Destructive Testing (NDT)  of ageing of a model: from LTI to non LTI structure of model

- design of  virtual temperature or heat flux sensors

- IR estimation easier if forced convection present: IR returns quickly to zero 

- however, need for a calibration
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8. Conclusions and perspectives

 Very large field of application:

 On-line characterization and NDT of heat exchangers7 using steady state transmittances,

 Virtual sensor construction (calibration + inverse input problem) for radiation in furnaces8 ,

 Pollutant source estimation9 (inverse input problem in turbulent mass transfer),

 Management of heat storage.

[6] A. Degiovanni, B. Rémy, An alternative to heat transfer coefficient: a relevant model of heat transfer between a developed fluid flow and a 

non-isothermal wall in the transient regime, International Journal of Thermal  Sciences , Volume 102, April 2016, Pages 62–77.

[7] W. Al Hadad, V. Schick, D. Maillet, Fouling detection in a shell and tube heat exchanger using variation of its thermal impulse responses: 

Methodological approach and numerical verification, Applied Thermal Engineering, Volume 155 (2019) 612–619.

[8] Thomas Loussouarn,  Denis Maillet, Benjamin Remy, Diane Dan, Model reduction for experimental thermal characterization of a holding 

furnace, Heat and Mass Transfer, Volume 54, Issue 8, 1 (2018), Pages 2443-2452, DOI 10.1007/s00231-017-2156-7.

[9] F. Chata, E. Belut, D. Maillet, F.X. Keller, A. Taniere, Estimation of an aerosol source in forced ventilation through prior identification of a 

convolutive model,  International Journal of Heat and Mass Transfer 108 (2017) 1623–1633.
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 Perspectives:

 optimal deconvolution, for minimizing estimation bias and standard deviation, 

 in space domain: minimizing dependence of IR on the arbitrary type of BC at the frontier,

 in time domain, IR valid for linear forced response:

- no relaxation of the initial temperature field (uniform or steady state), 

- otherwise relaxation caused by past excitations

 if relaxation term, possible use of AutoRegressive models with eXternal inputs10 (ARX).

[10] T. Loussouarn,  D. Maillet, B. Rémy, V. Schick, D. Dan, Indirect measurement of temperature inside a furnace,

ARX model identification, Journal of  Physics: Conference  Series, Volume 1047, Issue 1, 4 July 2018, Article number 012006 012,

9th International Conference on Inverse Problems in Engineering, ICIPE 2017; University of Waterloo; Canada; May 23-26, 2017

Code 137986
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Thank you for your attention !

D. Maillet - ISETS – Jan. 17-18, Xi’an, China


