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ABSTRACT 

In this study, problem of mixed convection in a vertical microannulus subjected to uniform heat flux thermal boundary 

condition is investigated theoretically. The analysis is carried out in a form which includes both the effects of viscous 

dissipation (Br) and rarefaction (Kn) at fully developed laminar flow condition. By taking into account slip flow regime, 

first order slip velocity and temperature jump boundary conditions are applied to governing equations. A semi-

analytical method, the perturbation method,  is used to solve the momentum and the energy governing equations. For 

different values of radius ratio (r*),  the effects of mixed convection parameter (Gr/Re), viscous dissipation (Br), and 

rarefaction (Kn) on the velocity and temperature distributions and Nusselt number are discussed. It is disclosed that the 

increase in the value of  Gr/Re increases the Nusselt number on both inner and outer walls while an opposite trend is 

obtained with an increase in the value of Br or r*. 

1. INTRODUCTION 

Advances in the field of manufacturing techniques have given a great acceleration to the fabrication of micro-scale 

electromechanical systems (MEMS), which offer superior performances compared to macro-scale systems. 

Fundamental studies have shown that some effects and conditions (e.g., rarefaction, viscous dissipation or slip-flow)  

that are normally neglected in macro-scale convection can alter the fluid flow and heat transfer characteristics 

significantly at micro-scale. Although many earlier studies focused on forced convection in micro-scales, the studies 

regarding natural or mixed convection are limited. 

 

 The natural convection problem in an open-ended vertical parallel plate microchannel was first studied by Chen 

and Weng [1] for the asymmetric wall temperature boundary condition. The effects of rarefaction and fluid-wall 

interaction were found to increase the volume flow and to decrease the heat transfer rate. They also analyzed the natural 

convection problem in a vertical annular microchannel for different curvature radius ratios, rarefaction and 

accommodation coefficients (momentum and thermal accommodation coefficients) [2]. Haddad et al. [3] numerically 

investigated the natural convection in a vertical parallel-plate microchannel in the slip flow regime 3 1(10 10 )Kn− −  .  

Their results emphasized the significant effect of rarefaction on the temperature distribution and Nusselt number. The 

entrance effect for natural convection in a vertical microchannels was numerically considered by Biswall et al. [4]. 

Their results showed that the increase in the Rayleigh and the Knudsen numbers increased the Nusselt number. Sadeghi 

et al. [5] applied  the second law of thermodynamics to annular microchannel geometry for the fully developed flow 

condition by taking the viscous heating and first order boundary conditions into account. Natural convection in an open-

ended vertical parallel-plate microchannel including the second-order slip model, thermal creep effect and variable 
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thermophysical properties was studied by Rahimi and Niazmand [6]. It was found that the second-order effects reduced 

the temperature jump and slip velocity, whereas the thermal creep strongly increased the slip velocity in both 

developing and fully developed regions. Jha et al. [7] investigated the effect of magnetic field on fluid velocity, 

volumetric flow rate and skin friction inside a  vertical microannulus for both hydrodynamically and thermally fully 

developed conditions. It was determined that the fluid velocity and the volume flow rate decreased with an increase in 

the magnetic field. 

 

 Mixed convection in some common microgeometries was firstly investigated by our research group [8-10]. Avci 

and Aydin [8-9] analytically investigated fully developed flow in a vertical parallel-plate microchannel for the 

asymmetric wall temperature and heat flux thermal boundary conditions in the slip flow regime. In another study, Avci 

and Aydin [10] analytically investigated the effect of mixed convection parameter, Knudsen number and aspect ratio on 

the Nusselt number in a vertical microannulus for the fully developed flow condition. It was found that the Nusselt 

number decreased with an increase in Kn while an opposite trend is observed with an increase in the mixed convection 

parameter. Karimipour et al. [11] studied the gravity effects on the mixed convection heat transfer in a microchannel 

using the lattice Boltzman method. It was shown that the effects of buoyancy forces were important for Kn < 0.05 while 

they could be ignored Kn > 0.05. Mixed convection flow in an asymmetrically heated long vertical microchannel was 

numerically analyzed by Jian and Weng [12] for the second-order slip conditions. It was disclosed that the second-order 

slip had an appreciable effect on the flow but a negligible effect on the heat transfer. Sadeghi A. et al. [13] investigated 

the fully developed flow mixed convection in vertical microducts in the slip flow regime for different cross sections 

(triangle, square, hexagon, circle and rectangle). Two axially constant heat flux boundary conditions of H1 and H2 were 

considered in the analysis. For the triangular section channel, the Nusselt number increased and the pressure drop 

decreased with an increase in the mixed convection parameter. In a very similar study, Sadeghi M. et al. [14] extended 

their study for the vertical microducts of constant but arbitrary geometry. As a general character, they indicated that the 

friction resistance and Nusselt number increased with a decrease in Knudsen number. Moslehi and Saghafian [15] 

focused on the developing hydrodynamical and thermal behaviors of mixed convection gas flow in a vertical 

microplane channel under uniform magnetic field condition. Their result showed that the friction factor increased 

significantly with an increase in Ha. It is also found that the effect of the mixed convection parameter on the Nusselt 

number was negligible. Avramenko et al. [16] analytically and numerically investigated the mixed convection problem 

in a microtube subjected to a linear change in wall temperature. Mixed convection in a vertical microannulus including 

the effect of temperature dependent viscosity and slip flow regime was studied by Jha and Aina [17]. It was found that 

the Knudsen number reduced the rate of heat transfer, whereas the values of viscosity variation parameter increased the 

rate of heat transfer and skin friction. 

 

 Besides the effects of rarefaction and mixed convection parameter, viscous dissipation is an another critical effect 

that should be taken into consideration at microscale. Due to the high velocities in the small passages, it distorts the 

temperature profiles and, in the following, heat-transfer rates by playing a role as an internal heat-generation source. In 

our very recent article [18], we studied mixed convection in a vertical parallel-plate microchannel including the viscous 

dissipation effect. As an extension of that article, here, we studied the mixed convection problem in a vertical 

microannulus with constant heat flux boundary condition by including viscous dissipation effect into analysis. To the 

authors’ best knowledge, this is the first study for mixed convection in this geometry considering the effects of  

rarefaction and viscous dissipation effects together. 

2. METHOD 

The schematic of the mixed convection problem in a vertical microannulus is depicted in Fig. 1. The analysis is 

presented in the form of a set of mathematical modeling and analysis steps. The flow is considered to be steady, laminar 

and fully developed both hydrodynamically and thermally. All thermophysical properties are assumed to be 

independent of temperature. 

 
 The microannulus is assumed to be long enough to reach the existence of a fully developed flow. In this case, the 

axial velocity and dimensionless temperature components and the axial pressure gradient will no longer change after a 

certain length along the channel ( 0u x  = , 0x  = and .dp dx const= ). For the details, readers are referred to 

see Aung and Worku [19]. 
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Figure 1: Schematic of the problem geometry. 
 
 Using the usual Boussinesq approximation with the aforementioned considerations, the momentum and energy 

equations in cylindrical coordinates can be written as in the following: 
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where the third terms on the right sides of Eq. (1) is the buoyancy force and the second term in the right hand side of 

Eq. (2) represents viscous dissipation term. The symbols appearing in the above set of equations are as follows: p is the 

pressure; u the axial velocity; T the temperature; g the gravitational acceleration;  the dynamic viscosity;  the thermal 

expansion coefficient;   the density;   the thermal diffusivity;  the kinematic viscosity and cp the specific heat at 

constant pressure, respectively.  

 

 Here, Tm denotes the mean fluid temperature defined as: 
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 In the fully developed flow for the corresponding boundary conditions, the local temperature has a linear variation, 

see Barletta and Rossi di Schio [20]. On the basis of this way; the axial temperature gradient in the fully developed 

region is written as: 
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 The non-dimensional temperature distribution shows a constant change while the temperature distribution is in a 

continuous change in the flow direction 
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. Based on this condition and taking into account 

the Eq. (4), Eq. (2) can be arranged as follows: 
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 In the analysis, the usual continuum approach is integrated with the two main characteristics of the microscale 

phenomena: the velocity slip and the temperature jump [22]. 

 

2 v

s

wv

u
u

n






−  
=  

   (6) 



Proceedings of the International Symposium on 

 Thermal Effects in Gas flows In Microscale 

October 24-25, 2019 – Ettlingen, Germany 

 

4 

A Marie-Curie-ITN 
within H2020 

 

2 2

1 Pr

t

s w

wt

T
T T

n

  

 

−  
− =  

+    (7) 

where v  and t  are the tangential momentum accommodation coefficient and the thermal accommodation 

coefficient, respectively. Their typical values (near unity) are taken in the analysis. 

 

 For the solution of Eqs. (1) and (2), the corresponding boundary conditions are written as: 

 ( )
is
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where k is the thermal conductivity, iq   and oq   are the heat fluxes at the inner and outer cylinders, respectively. 

 

 Multiplying the both sides of Eq. (5) with r and then integrating it with respect to r in the range of [ , ]i or r  gives: 
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where mu  denotes the mean velocity which can be determined from: 
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 Substituting Eq. (9) back into Eq. (5) and Eq. (5) is rearranged as: 
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 The dimensionless quantities described for a constant heat flux boundary condition can be written as: 
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where ( 2( ))h o iD r r= −  is the channel hydraulic diameter. 

 

 By introducing the above- nondimensional parameters, the governing equations take the following forms: 
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where 
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 The nondimensional boundary conditions can be rewritten as: 
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 In a similar manner, the dimensionless mean fluid temperature and the mean velocity given in Eqs. (3) and (10) 

can be arranged as: 
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 When the effect of the viscous dissipation is neglected ( 0Br = ), Eqs. (13) and (14) are transformed into a linear 

form and an analytical solution is possible. 

 
2 2

1 1

4(1 *) Re 4(1 *)

d dU Gr
R

R dR dR r r
 

 
= − − 

− −   (19) 

 
2

*1

(1 * )(1 *)

qr rd d
R U

R dR dR r r

 +  
=   

− −     (20) 

 Differentiating both sides of Eq. (19) with respect to R and substituting obtained temperature gradient into Eq. 

(20), one can obtained a fourth-order linear differential equation for U, as follows:  
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 Similarly, the regarding boundary conditions can be rearranged as: 
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where C is the dimensionless parameter defined as: 
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 When Eq. (18a) is taken into account and both sides of Eq. (19) are multiplied by R  and then Eq. (19) is 

integrated with respect to R  in the range of [r*,1], the dimensionless parameter  can be obtained as follows: 

 * 1

8(1 *)
*

(1 *) R r R

r dU dU
r

r dR dR


= =

 −
= − 

+    (24) 

 Substituting the dimensionless velocity and Eq. (24) into Eq. (19), the dimensionless temperature profile can be 

obtained as: 
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 In the presence of viscous dissipation (Br  0), the momentum and energy equations (Eqs. (13-14)) get a non-

linear form, and, therefore they cannot be solved analytically. In this case, by considering ( )/ ReGr  as the perturbation 

parameter, the solution of the regarding equations can be obtained approximately by using the perturbation expansion as 

in the following: 
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where Gr is the Grashof number, Re is the Reynolds number and U and   are the dimensionless velocity and 

temperature, respectively. 

 

 By applying Eqs. (26-29) into Eqs. (13-14) and Eqs. (16-18), sets of ordinary differential equations can be 

obtained, which can be solved in succession and yield unknown functions of ( )nU R  and ( )n R  and unknown 

parameters of n  and n . A sequential solution procedure beginning with the zero-order problem, 0n = , and then 

progressing to 1,2,...n =  etc. is followed. 

 

 In regard to the above method, the zero order problem ( 0)n =  yields: 
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 For the symmetric case ( 1qr = ) under the relevant boundary conditions, the Eq. (30) is solved and 
0 ( )U R is 

obtained as: 
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 By using Eq. (32), the Eq. (31) is solved under the regarding boundary conditions to obtain at the dimensionless 

temperature profile ( 0 ( )R ). 

 

 For every integer 0n  , the n-order boundary value problem is given, namely: 
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 Using the regarding dimensionless velocity and temperature profiles, the dimensionless bulk temperature b  is 

given by: 
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 The Nusselt number based on the difference between the wall and the fluid bulk temperature is given by: 
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 (38) 

 For all the cases considered, the above sequential solution procedure is continued until the change in Nu values 

between two successive steps is negligible. The obtained results showed that including the first 4 terms is sufficient to 

for adequate accuracy. 

3. RESULTS AND DISCUSSION 

In this study, combined effects of mixed convection parameter and viscous dissipation on the fully developed laminar 

mixed convection flow of a rarefied gas inside a vertical micro-annulus are investigated theoretically by using the 

perturbation method. The channel walls are maintained at uniform constant heat flux thermal boundary condition and 

the viscous dissipation in the fluid is taken into account. 

 
Br Kn = 0.00  Kn = 0.05  Kn = 0.10  

 Present Ref. [18] Present Ref.[18] Present Ref. [18] 

0.00 8.2957 8.2950 5.3514 5.3511 3.8110 3.8117 

0.02 7.3438 7.3367 5.2188 5.2192 3.7800 3.7803 

0.04 6.5972 6.5702 5.0895 5.0936 3.7480 3.7494 

0.06 5.9314 5.9432 4.9710 4.9739 3.7164 3.7191 

0.08 5.4254 5.4208 4.8536 4.8597 3.6854 3.6892 

0.10 5.0064 4.9787 4.7502 4.7505 3.6549 3.6599 

 

Table 1. Comparison of Nu for present study and available results from Altunkaya et al. [18] for different values Br 

and Kn at * 0.98r  , Gr/Re=100, rq=1 and Pr=0.71. 

 

 At first, we verified our analysis by comparing some limiting results with those available in the existing literature, 

mainly by those of Altunkaya et al. [18]. As it is seen from Table 1, comparison of our results with those in terms of the 

Nusselt number for different values of Br and Kn at Gr/Re=100 and * 0.98r   showed a good agreement. 
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      (a)                                                                                     (b) 
 

Figure 2: The variation of dimensionless velocity (a) and dimensionless temperature (b) with R for different values of 

Kn at Gr/Re=100, rq=1 and Br=0.10. 

 

 The variation of the dimensionless velocity and temperature with the ratio of wall heat flux for various values of 

the Knudsen number at Gr/Re = 100 and Br = 0.10 is given Fig. 2a and b, respectively. As it is seen from Fig. 2a, the 

fluid velocity in the vicinity of the wall increases with an increase in the Knudsen number while the maximum velocity 

decreases at the center of the channel. This behavior is attributed to the increase in the buoyancy forces and change in 

the momentum transfer at the wall as a result of different slip velocities.  

 

 A similar behavior is also obtained for the temperature distribution as the Kn number increases. As it is seen from 

the Fig. 2 b., the fluid temperature increases in the vicinity of the wall with an increase in the Kn number. Here, it 

should be noted that the definition of the dimensionless temperature is 
( )

m

i h

T T

q D k


−
=


. 

 

 
   (a)                                                                                         (b) 
 

Figure 3: The variation of dimensionless velocity (a) and dimensionless temperature (b) with R for different values of 

Gr/Re at Kn=0.05, rq=1 and Br=0.10. 

 
 For Kn=0.05 and Br=0.10, the effect of the mixed convection parameter on the dimensionless velocity and 

temperature profiles is given Fig. 3. Here, / Re 0Gr =  and / Re 0Gr   represent the forced convection and the 
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mixed convection cases, respectively. Due to an increase in Gr/Re in the microannulus flow, the maximum velocity 

profile shifts towards outer wall. This behavior is the result of the contribution of fluid momentum in the region near the 

wall due to the high buoyancy forces (Fig. 3a).   

 

 In Figure 3b, with an increase in Gr/Re, it is seen that the dimensionless temperature exhibits an increasing 

tendency in the inner wall while a decreasing tendency in the outer wall.  

 
    (a)                                                                                         (b) 
 

Figure 4: The effect on r* on the variation of Nu with Gr/Re in the inner cylinder (a) and outer cylinder (b) at.Kn=0.05, Br=0.1, 

rq=1, Pr=0.71. 

 
 The effect of r* on the variation of Nu with Gr/Re is depicted in Fig. 4. As general behavior, for all the values of 

Gr/Re, the increase in r* results in a decrease in the Nu at the inner wall while the opposite is true at the outer wall. For 

the both walls, the influence of the increasing Gr/Re is to increase the Nu. However, this Nu-dependence on Gr/Re is 

negligible for the inner wall.    

 

 
      (a)                                                                                      (b) 
 

Figure 5: The effect on r* on the variation of Nu with Br in the inner cylinder (a) and outer cylinder (b) at Kn=0.05, Gr/Re=100, 

rq=1, Pr=0.71. 

 
 For Gr/Re=100 and Pr=0.71, Fig. 5 shows the effect Br  on the Nu for various values of r*. At both walls, it is 

seen that the Nu tends to decrease with an increase in Br. This behavior can be explained by the internal heating effect 
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of viscous dissipation which leads high wall temperatures. For a constant value of wq  , it is clear that the increase in Br  

increases w bT T−   and consequently reduces the Nu.  

4. CONCLUSIONS 

In this study, the combined effects of mixed convection parameter and viscous dissipation on a fully developed laminar 

micro-annulus flow are investigated theoretically. The slip velocity and temperature jump conditions at the walls and 

the viscous dissipation in the fluid have been included in the analysis. The major findings can be summarized as 

follows: 

 

 1. The maximum velocity shifts towards outer wall with an increase in the mixed convection parameter (Gr/Re).  

 

 2. The dimensionless wall temperature  increases with increasing Kn due to the high temperature jumps at the 

walls. 

 

 3. The Nu at the inner wall is nearly independent of  Gr/Re while it increases at the outer wall with increasing with 

increasing Gr/Re. 

 

 4. The Nu at the inner wall get lower values with an increase in r*, while the opposite is true at outer wall.   

 

 5. Either at the inner and outer wall the Nu decreases with increasing Br.  

5. NOMENCLATURE 

Br Brinkman number [
2

m i hu q D = ] 

cp specific heat at constant pressure [Jkg-1 K-1] 

C dimensionless parameter [
4( *) ((1 *) (1 *))

4Re
q

Gr
r r r r− + − + ] 

Dh hydraulic diameter [m] 

g gravitational acceleration 

Gr Grashof number [
4 2

i hgq D k = ] 

h convective heat transfer coefficient [Wm-2 K-1]  

k thermal conductivity [Wm-1 K-1] 

Kn Knudsen number [
hD ] 

Nu Nusselt number [ hhD k= ] 

P dimensionless pressure [
2

mp u= ] 

Pr Prandtl number [  = ] 

q  heat flux [W/m2] 

r  radial coordinate [m] 

r* ratio of radius [ i or r ] 

rq ratio of wall heat fluxes [ 0 iq q  ] 

R dimensionless radial coordinate [ or r ] 

Re Reynolds number [ m hu D = ] 

T temperature [K] 

Tm mean fluid temperature [K] 

u axial velocity [m/s] 

um mean velocity [m/s] 

U dimensionless axial velocity [ mu u ] 

x axial coordinate [m] 
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X dimensionless axial coordinate [ Re hx D= ] 

 

Greek symbols 

 

α thermal diffusivity [ ( )0/ pk c ] 

βv, βt dimensionless variables 

 specific heat ratio 

 dimensionless pressure-drop parameter [ ]dP dX−  

 dimensionless parameter [ ( )
1

2

*r

dUR dR
dR ] 

 dimensionless temperature [ ( )m i hT T q D k− ] 

 molecular mean free path [m] 

 dynamic viscosity [Pa s]  

 kinematic viscosity [ 0/  ] 

ρ0 density [kg/m3] 

 

Subscripts 

 

b bulk 

i inner cylinder properties 

m mean 

o outer cylinder properties 

s fluid properties on walls 

w wall  
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